A weighted relative isoperimetric inequality in convex cones

نویسندگان

چکیده

A weighted relative isoperimetric inequality in convex cones is obtained via the Monge-Ampere equation. The method improves several inequalities literature, e.g. constants a theorem of Cabre--Ros--Oton--Serra. Applications are given context generalization log-convex density conjecture due to Brakke and resolved by Chambers: case $\alpha-$homogeneous ($\alpha>0$), concave densities, (mod translations) balls centered at origin intersected with cone proved uniquely minimize perimeter mass constraint. In particular, if taken be $\{x_n>0\}$, reflecting density, $\{x_n>0\}$ remain unique minimizers $\mathbb{R}^n$ analog when vanishes on $\{x_n=0\}$.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relative Isoperimetric Inequality for Minimal Submanifolds in a Riemannian Manifold

Let Σ be a domain on an m-dimensional minimal submanifold in the outside of a convex set C in S or H. The modified volume M Σ is introduced by Choe and Gulliver 1992 and we prove a sharp modified relative isoperimetric inequality for the domain Σ, 1/2 mωmM Σ m−1 ≤ Volume ∂Σ−∂C , where ωm is the volume of the unit ball of R. For any domain Σ on a minimal surface in the outside convex set C in an...

متن کامل

Characterization of Isoperimetric Sets inside Almost-convex Cones

In this note we characterize isoperimetric regions inside almostconvex cones. More precisely, as in the case of convex cones, we show that isoperimetric sets are given by intersecting the cone with a ball centered at the origin.

متن کامل

A Reverse Isoperimetric Inequality for Convex Plane Curves∗

In this note we present a reverse isoperimetric inequality for closed convex curves, which states that if γ is a closed strictly convex plane curve with length L and enclosing an area A, then one gets L ≤ 4π(A+ |Ã|), where à denotes the oriented area of the domain enclosed by the locus of curvature centers of γ, and the equality holds if and only if γ is a circle. MSC 2000: 52A38, 52A40

متن کامل

Isoperimetric Regions in Cones

We consider cones C = 0 × Mn and prove that if the Ricci curvature of C is nonnegative, then geodesic balls about the vertex minimize perimeter for given volume. If strict inequality holds, then they are the only stable regions.

متن کامل

A Generalized Affine Isoperimetric Inequality

A purely analytic proof is given for an inequality that has as a direct consequence the two most important affine isoperimetric inequalities of plane convex geometry: The Blaschke-Santalo inequality and the affine isoperimetric inequality of affine differential geometry.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Methods and applications of analysis

سال: 2021

ISSN: ['1073-2772', '1945-0001']

DOI: https://doi.org/10.4310/maa.2021.v28.n1.a1